P. DBmosi, Sz. Ivan (Eds.): Automata and Formal Languagf. 2011,
Debrecen, Hungary, August 17-22, 2011. Proceedings, ged 328

On Nondeterminism in Programmed
Grammars

Alexander Meduna Lukas Vrabel Petr Zemek

Faculty of Information Technology, Brno University of Tewiogy
Bozetchova 2, 612 66 Brno, Czech Republic
{meduna, i vrabel ,i zenek} @it.vutbr.cz

Abstract

In the present paper, we discuss programmed grammars. Meo#-s
ically, we discuss their nondeterministic behavior andréguction. We
prove that for every programmed grammar, there exists aivalgat pro-
grammed grammar where only a single rule has more than onessar.
Furthermore, we establish an infinite hierarchy of languagglies result-
ing from the cardinality of successor sets. Open problerasaage formu-
lated in the conclusion of the paper.

1 Introduction

A programmed grammafsee [3, 12]),G, is a context-free grammar, in which a
set of rules—calleduccessors-is attached to each rulé can apply a rule: in
the following way. If the left-hand side of occurs in the sentential form under
scan,G rewrites the left-hand side ofto its right-hand side, and during the next
derivation step, it has to apply a rule from the set attacbed t

Since their introduction, programmed grammars have repted a vividly
studied area of formal language theory, as demonstratedveyad recent studies,
such as|[1,2,/4--9]. Although this theory has establisheid filnedamental proper-
ties (seell3,.10, 13] for a highlight of crucially importaesults), the precise role
of nondeterminism in programmed grammars has not beerestaalits fullness.
In [1] and [2], it is proved that (a) if we require every ruledrprogrammed gram-
mar to have at most one successor, then we can generate dtdydimguages,
and (b) any programmed grammar can be converted to an egpiyabgrammed
grammar with every rule having at most two successors. Alwer related re-
sults are proved in there. However, to our knowledge, thesedeen no study in

316

On Nondeterminism in Programmed Grammars

terms of (i) the maximum needed number of rules with more thansuccessor,
and (i) the impact of the overall number of successors iagwith two or more
successors to the generative power of programmed grammiées.aim of this

paper is, therefore, to fill this gap.

To study (i), we introduce a new normal form for programmedngmars,
called theone-ND rule normal forn{ND stands fomondeterministic), where no
more than one rule has more than one successor. We provedimapeogrammed
grammar can be converted to this form.

To study (ii), we propose a hew measure, calledaberall nondeterminism
of a programmed grammar, as the sum of all successors of withstwo or
more successors. Then, informally speaking, we show tlisitntieasure gives
rise to an infinite hierarchy of language families. More [gely, letn denote the
overall sum of successors of rules with two or more successdfe prove that
programmed grammars with + 1 such nondeterministic choices can generate
more languages than programmed grammars with ormlgoices.

It should be noted that some related measures of programraathtars and
other regulated grammars are discussed in Section 43 @n@]in [5, 7]. For
example, on page 192 in/[3], it is pointed out that the morericed in matrix
grammars we have, the more power we have.|In|[5, 7], the neededber of
nonterminals to sustain the power of programmed grammadgésiissed. As
obvious, our result can be thus seen as a continuation of #tedies.

The paper is organized as follows. First, Secfibn 2 giveshallnecessary
terminology. Then, Sectidn 3 rigorously establishes the t@sults, (i) and (i),
sketched above. Finally, Sectioh 4 formulates some opévigroareas.

2 Preliminaries and Definitions

This paper assumes that the reader is familiar with the yhefdiormal languages
(see [11]), including the theory of regulated rewritinggdé&]). For a setQ,
card(Q) denotes the cardinality ap, and2® denotes the power set 6f. For

an alphabet (finite nonempty sef), V* represents the free monoid generated
by V' under the operation of concatenation. The uni¥/dfis denoted by. Set
V+ = V* — {e}; algebraically,V* is thus the free semigroup generatediby
under the operation of concatenation. koe V*, |w| denotes the length af.

Definition 1. A programmed grammafsee [3| 12]) is a quintupleZ = (N, T,
S, ¥, P), whereN is an alphabet ofionterminalsT" is an alphabet oferminals
(NNT = 0), S € N is thestart symbal ¥ is an alphabet ofule labels and
PC VU xNx (NUT)* x 2% is afinite relation such thatrd (V) = card(P),
andfor(r, A, z,0,),(q, B,y,04) € P,if (r,A,z,0,) # (q, B,y,04), thenr # q.

Elements of P are calledrules Instead of(r, A,z,0,) € P, we write

317

Alexander Meduna, Lukas Vrabel and Petr Zemek

|r: A — =z,0,.] € P throughout this paper. Fdr: A — z,0,] € P, Ais
referred to as thieft-hand sideof r, andz is referred to as thaght-hand sideof
r. LetV = N UT be thetotal alphabet G is propagatingif and only if every
|r: A = x,0,| € P satisfiest € V*. Rules of the formr: A — ¢,0,] are
callederasing rules

The relation of adirect derivation symbolically denoted by, is defined
over V* x W as follows: for(zy,7),(x2,s) € V* x U, (z1,7) = (z2,s) (or
(x1,7) =¢ (x2,s), if there is a danger of confusion) if and onlyif = yAz,
xr9 = ywsz, |r: A — w,o0,] € P,ands € o,.

Let |r: A — w,o0,| € P. Then,o, is called thesuccess fieldf . Observe
that, due to our definition of the relation of a direct deiivat if o, = 0, thenr is
never applicable. Therefore, we assume that (), forall |[r: A — w,o, | € P,
throughout the rest of our paE]erLet =" =* and=" denote theath power
of =, for somen > 0, the reflexive-transitive closure ef, and the transitive
closure of=, respectively. LetS,r) =* (w,s), wherer,s € ¥ andw € V*.
Thelanguage generated ¥ is denoted by.(G) and defined ad (G) = {w €
T | (S,r) =* (w, s), for somer, s € U}. [|

Next, we define a new normal form and a new measure for progeshgram-
mars. Then, we illustrate the defined notions by an example.

Definition 2. LetG = (N, T, S, ¥, P) be a programmed grammaé is in
the one-ND rule normal form(ND stands fornondeterministic) if at most one
|r: A — z,0,] € P satisfiessard(c,.) > 1 and every othefs: B — y,05| € P
satisfiescard (o) < 1. [|

Definition 3. LetG = (N, T, S, ¥, P) be a programmed grammar. For each
|r: A— z,0.] € P, let{(r) be defined as:

() = card(o;) if card(o,) > 2
10 otherwise

Theoverall nondeterminism a¥ is denoted bynd(G) and defined asnd(G) =

ZT‘E\I/ C(T) u

By P, we denote the family of languages generated by programmeed-g
mars. By, P, we denote the family of languages generated by programmaaa-g
mars in the one-ND rule normal form.

Definition 4. Let X € {P,;P} andL € X. Then, we define

'Recall that such a definition is not unusual in the literateee, for instance, [8]).

318

On Nondeterminism in Programmed Grammars

e ond(X, L) = min{ond(G) | G is in the form generatind’, L = L(G)},
e OND(X,n) ={M € X | ond(X, M) <n}. [

Example 1. Consider the languag& = {a"b"c¢™ | n > 1}. This non-context-
free language is generated by the programmed grantimar (N, T, S, ¥, P),
whereN = {S, A, B, C}, T = {a, b, ¢}, and P contains the seven rules

lr1: S — ABC, {ra,r5}], lrs: A — a, {re}],
lro: A — aA, {rs3}], lr6: B — b, {rr}],
lr3: B — bB, {r4}], [r7: C — ¢, {r7}].
lra: C = cC,{rq,r5}],

For exampleaabbce is generated bysS, r1) = (ABC, r) = (aABC,
r3) = (aAbBC, 1r4) = (aAbBcC, r5) = (aabBcC, rg) = (aabbcC, r7) =
(aabbee, r7).

Since the only nondeterministic rules aieandry, each containing two rules
in their successor sets, the overall nondeterminisi&' @ ond(G) = 4. There-
fore, K €« OND(P,4).

Because of; ands, G is not in the one-ND rule normal form. However,
consider the programmed grammidr= (N, T, S, V', P’), where P’ contains
the eight rules

|70: S — abe, {ro}], |ry: C = cC,{ra,75}],
|r1: S — ABC, {ra}], lr5: A — a,{r¢}],
[r2: A — aA, {rs}], lré: B — b, {r7}],
lrs: B — bB,{rs}], [r7: C — e, {r7}].

Clearly, L(H) = K andH is in the one-ND rule normal form. Observe that
ond(H) = 2,s0K € OND(P,2). Finally, sinceH is in the one-ND rule normal
form, K € OND(;P,2). In the next section, we show th&AND(P,n) =
OND(,P,n). |

3 Results

The following algorithm converts any programmed grammgro an equivalent
programmed grammaé’, in the one-ND rule normal form. To give an insight

319

Alexander Meduna, Lukas Vrabel and Petr Zemek

into this conversion, we first explain the underlying ideaibd it. First, we in-
troduce the only nondeterministic rule 6f, | X : # — &,0x |. Obviously, each
nondeterministic choice of some rule: A — z,{s1,s2,...,s,}] Of G has to
be simulated using’. To ensure proper simulation, we have to satisfy that (i) one
of s; is applied after-, and (ii) no other rules can be applied after

To satisfy both of these requirements, we introduce a shaamerminal sym-
bol, (r), for each ruler of G. These symbols are used to encode the information
about the last applied rule in a derivation. Then, for eadtsssor of-, s;, we
introduce the following sequence of rules:

o |r: A — (r)#,{X}] to preserve the information thatis the currently
simulated rule,

e X to make a nondeterministic choice of the successet ahd
o |(rr>s;): (ry — z,{s;}| to simulater and continue witts;.

Note that if X chooses someép > ¢) with p # r instead, the derivation gets
blocked becausé) is not present in the current sentential form.

Algorithm 1. Conversion of any programmed grammar to the one-ND rule nor-
mal form.

Input: A programmed gramma&; = (N, T, S, ¥, P).

Output: A programmed grammar in the one-ND rule normal ford, =
(N',T,S',9' P"), such thatL(G") = L(G).
Method: Initially, set:
N'=NU{#}u{(r)[rev}
U’ = ¥ U {X} with X being a new unique symbol;

P ={lr: A— z,0.] | |r: A— z,0.] € P,card(o,,) = 1} U
{|X: # — &,0x]} with ox being initially set td).

Now, for each|r: A — w,0,| € P satisfyingcard(o,) > 1, apply the
following two steps:

(1) add|r: A — (r)#,{X}| to P’;

(2) for eachq € o,, add|(r > ¢q): (r) — w,{q}| to P', (r > ¢) to ¥,
and(r > ¢) toox. [|

Lemma 1. Algorithm[] is correct.

320

On Nondeterminism in Programmed Grammars

Proof. Clearly, the algorithm always halts aidd is in the one-ND rule normal
form. To establish.(G) = L(G’), we first proveL(G) C L(G’) by showing
how derivations of are simulated by=’, and then we prové(G’) C L(G) by
showing how everyv € L(G’) can be generated lgy.

First, we introduce some notions used later in the proof. 1Set N U T,
V'=N'UT,andN = {{r) | r € U}. For|p: A — z,0,] € P, letlhs(p) = A
andrhs(p) = x.

We say that a rule labeled byis usedin a derivation, if the derivation can
be expressed agi,p) =* (v,r) =T (w,q), and for two labels;, 7, we say
thatq followsr in a derivation, if the derivation can be expressedwasp,) =*

(v,7) = (w,q) =" (ua, p2).

Claim 1. Let(S,s) =& (w,q), wheres,q € ¥, w € V*, for somemn > 0. Then,
(Sv S) :>E’ (U),Q)

Proof. This claim is established by induction at, m > 0.

Basis.Letm = 0. Then, for(S, s) =% (S, s), wheres € ¥, there is(S, s) =2,
(S, s), so the basis holds.

Induction HypothesisSuppose that the claim holds for all derivations of length
or less, wheré < m, for somem > 0.

Induction Step.Consider any derivation of the for(i5, s) :>2“ (w, q), where

w € V*ands,q € ¥. Sincem + 1 > 1, this derivation can be expressed
as(S5,s) =¢ (u,p) =¢ (w,q), whereu € V*, p € ¥. By the induction
hypothesis(S, s) =% (u,p).

Now, we consider two possible cases, (i) and (i), based osthén|p: A —
x,0p| € P satisfiesard(o,) = 1 or card(op) > 1:

(i) Letcard(o,) = 1. Then,|p: A — z,0,] € P’ by the initialization part of
the algorithm, so the induction step is completed for (i).

(ii) Let card(op) > 1. Then,P’ contains the following three rules:

o [p: A— (p)#,{X}], created in (1),

e |X: # — e,0x], created in the initialization part of the algorithm,
and

o |(p>q): (p) = x,{q}|, created in (2) frong, such thafpr>q) € ox.

Based on these rulegy, p) :%, (w, ¢), so the induction step is completed
for (ii). O

321

Alexander Meduna, Lukas Vrabel and Petr Zemek

Now, we establish two claims which we use later in the proof.¢ff’) C
L(G).

Claim 2. Let (S,s) = (w,q), wheres,q € ¥ andw € V’*. Then, either
w € V*, or w can be expressed agr)#v or u(r)v, whereu,v € V* and
(ry € N.

Proof. Observe that only the rules created in (1) have symbols f’\dm- IV on
their right-hand side. These rules have to be followedXgywhich have to be
followed by some rule created in (2). A§ erases# and rules created in (2) are
rewriting symbols fromV to somew € V*, each string derived frons' can be
expressed as, u(r)#v, oru(r)v, whereu,v € V* and(r) € N. O

Claim 3. Let(S,s) =¢, (w,q), Wheres,q € ¥, andw € V'*. If w € V*, then
qgeVv.

Proof. Let w € V* and assume—for the purpose of contradiction—that

¥’ — ¥, Then,q is either X, or it is created in (2). As{ is only in the success
field of some|r: A — (r)#,{X}]| € P, created in (1), and labels created in (2)
are only in the success field &f, the derivation ofw, ¢) can be expressed in one
of the following two forms:

L] (S, 8) :>*G” (’U)lsz,’l“) =>q (w1<r>#w2,X), or
o (5,5) = (wiAws, 1) =ar (wi(r)#wa, X) = (wi(r)wa, (r>q)),

wherew;, wy € V*, and(r > q) € ox. Note that in both formsw would have
to contain somér) € N, contradictingw € V*. Thus,¢’ € ¥, so the claim
holds. O

The following claim shows that for each € V* derived inG’, there is a
derivation ofw in G.

Claim 4. Let(S,s) =@ (w,q), wheres,q € ¥, w € V*, forsomen > 0. Then,
(S,8) =& (w,q).
Proof. This claim is established by induction am, m > 0.

Basis.Letm = 0. Then, for(S, s) =2, (S, s), wheres € ¥, there is(S, s) =2
(S, s), so the basis holds.

Induction HypothesisSuppose that the claim holds for all derivations of length
or less, wheré < m, for somem > 0.

Induction Step.Consider any derivation of the for(ib, s) :>g;+1 (w,q), where
w € V*ands,q € ¥. Sincem + 1 > 1, this derivation can be expressed as

322

On Nondeterminism in Programmed Grammars

(S,s) =¢ (w,p) =a (w,q), whereu € V™*, p € ¥'. Now, we consider all
possible forms ofu, p) =¢’ (w, q), covered by the next two cases:

(i) Letu € V*. Then, by ClainiBp € W. Therefore,[p: A — w,{q}] € P’
is one of the rules created in the initialization part of thgodthm, so it is
also inP. Thus,(u,p) =¢ (w, ¢). By the induction hypothesigS, s) =,
(u, p), so the induction step is completed for (i).

(i) Let u = uy(r)us, whereuy,up € V* and(r) € N for somer € V.
Observe thatr: A — (r)#,{X}| € P’, created in (1), is the only rule
with (r) on its right-hand side. Furthermore, observe tahas to follow
r in the derivation. Ashs(r) contains# and only the rule labeled by
erases#, X has to be used after the last occurrence iofthe derivation.

Now, consider all the labes iny. These labels belong to the rules created
in (2). Only these rules are rewriting the symbols frafto somew € V*,

so they have to be used after, p) to satisfy (u,p) = (w,q). Aspis
followed byq, p = (r > ¢), so the derivation can be expressed as

(S, s) :>23,_3 (uy Aug,)
=a (u(r)Fug, X)
=c (ur(rjus, (r>q))
= (wa Q)'

Observe thalr: A — (r)#,{X}| € P’ is created in (1) from some
lr: A — w,0,] € P with ¢ € o,. Thus, (u1Auz,7) =¢ (w,q).
Clearly,u; Aup € V*. Therefore, by the induction hypothesis;, s) =,
(uq Aug,), so the induction step is completed for (ii).

These cases cover only two of the three possible forms (e ClainiR).
However, ifu = uy(r)#uq, thenp = X. As ox contains only rules created in
(2), ¢ would have to be inb’ — ¥, contradictingg € ¥. Thus, cases (i) and (ii)
cover all possible forms dfu, p) =« (w, q), so the claim holds. O

To establishZ(G) = L(G"), it suffices to show the following two statements:

e by Claim[1, for eachS, s) =¢ (w,q), wheres,q € ¥ andw € T*, there
is (S,s) =% (w,q), sSOL(G) € L(G");

o let(S,s) =¢ (w,q), wheres,q € ¥ andw € T*. Asw # S, sis used in
the derivation, and sths(s) = S. Observe that only rules with labels from
¥ havesS on their left-hand side, soc V. Asw € T*, ¢ € ¥ by Claim[3.
Then, by Claini}(S, s) =, (w,q), SOL(G') C L(G).

323

Alexander Meduna, Lukas Vrabel and Petr Zemek

As L(G) C L(G") andL(G") C L(G), L(G) = L(G"), so the lemma holds. O
The following theorem represents the first main achieverogtitis paper.

Theorem 1. For any programmed grammaf, there is a programmed grammar
in the one-ND rule normal formi, such thatL.(G’) = L(G).

Proof. This theorem follows from Algorithral1 and Lemrih 1. O

Now, we study the impact of the overall number of successorsiles with
two or more successors to the generative power of prograngmaedmars. First,
however, we introduce some notions. et= (N, T, S, ¥, P) be a programmed
grammar in the one-ND rule normal form. Sét= N UT, and for eachr: A —
x,0.] € P,leto(r) = o,. Foru € V*andW C V, letoccur(u, W) denote the
number of occurrences of symbols frdmi in w.

Lets = (ry,72,...,7%), Wherer; € U, foralli = 1,2,...,k, be a sequence
of labels. We say that is deterministicif o(r;—;) = {r;}, fori = 2,3,... k.
Each sequence of labels of the fofm,r,...,7;), wherej < k, is called a
prefixof s.

We say that generates:, wherea € V, ifsome|r;: A — z,0| € P satisfies
x = wav, Whereu,v € V*, for somei, 1 < i < k. We say that a derivation
containss if it can be expressed ds,p) =* (w1,r1) = (w2,7m2) = -+ =
(wg,) =* (v,q), whereu,v,w; € V*, p,q € ¥, foralli =1,2,...,k. Let
=5 be a binary relation defined ovér* as follows: foru,v € V*, u =4 v if
and only if there is a derivatiotw;, 1) = (w2,72) = -+ = (wk, %) = (v,D)
such thatv; = wu.

Let @, be the set of all deterministic sequences beginning withP and let
< be a binary relation ove®, defined ass < ¢ if and only if s is a prefix oft.
It is easy to see that is reflexive, antisymmetric, transitive, and total (as a# t
sequences are deterministic and starting with the samg rAkethere is a least
element for every nonempty subset@f, (Q,, <) is a well-ordered set.

We say that), generatesz € V if and only if there is some € @, such
thats generates.. We say that),. reduces nonterminali there is somes € @,
such that for each > s and for eachu, v € V*, if u =, v, thenoccur(u, N) >
occur(v, N).

Lemma 2. OND(P,n) = OND(;P,n)

Proof. Let G = (N, T, S, ¥, P) be a programmed grammar. Then, by
Algorithm [and Lemma]l, we can construct a programmed granmméghe
one-ND rule form,G’ = (N',T,S’, ¥’ P'), such thatL(G) = L(G’) and

324

On Nondeterminism in Programmed Grammars

lr: A = z,0.] € PP = {|X:# — ¢e,0x]} satisfiescard(c,) < 1. Ob-
serve that for eachr: A — z,0,| € P with card(o,) > 1, there arecard(o,.)
labels inox created in (2) of Algorithni]1. As these are the only labels in
and all other rules i?’ have at most one label in their success field, by Defini-
tion[3, ond(G’) = ond(G). Thus,OND(P,n) C OND(;P,n). Obviously,
OND(P,n) € OND(P,n), so the lemma holds. O

Lemma 3. LetG = (N, T, S, ¥, P) be a programmed grammar in the one-ND
rule normal form such thak (G) is infinite. Then, there is exactly one= ¥ such
thatcard(o(r)) > 1.

Proof. This lemma follows from Definition]2 in Sectidd 2 and from Lemr@
in [2], which says that programmed grammars with every ralérg at most one
successor generate only finite languages. O

Lemma 4. LetG = (N, T, S, ¥, P) be a programmed grammar in the one-
ND rule normal form such thak(G) is infinite, and letr, denote the only rule
satisfyingcard(o(r;)) > 1. Then, there are,q € o(r,) such thatQ, reduces
nonterminals and), does not reduce nonterminals.

Proof. Observe that there is a finite numbero& V* that can be derived without
r, being used in their derivation. Furthemorg,has to be used arbitrary many
times to derive a string of arbitrary length (see Leniia 3).

Now, we prove by contradiction that there is at least ere o (r,,) such that
@, reduces nonterminals. Assume—for the purpose of contiadie-that each
Q., wherer € o(r;), does not reduce nonterminals. Then, for sufficiently large
k, (u,rz) =* (w,q) impliesw ¢ T*. Therefore,L(G) would be finite, which
leads to a contradiction. Thus, there is at leastoaer (r,,) such that), reduces
nonterminals.

Now, we prove by contradiction that there is at least ere o (r,.) such that
@, does not reduce nonterminals. Assume—for the purpose dfazbction—
that each,., wherer € o(r,), reduces nonterminals. Then, there exists some
k > 0 such that eaclw,r,) =T (w,q), wherew € T*, implies |w| < k|u|. As
there is a finite number of suclhthat can be derived fron§' without usingr,,
L(Q) is finite, which leads to a contradiction. Thus, the lemmalsol O

Lemma5. OND(;P,n) C OND(;P,n +1)

Proof. Let L,, be a language ovet = {ay,as,...ay}, defined as
n
Ln = J{a:}*.
=1

325

Alexander Meduna, Lukas Vrabel and Petr Zemek

We show thatnd (1P, L,,) = n + 1.
First, observe thak,, is generated by the propagating programmed grammar

G = ({S}v{a17a27"'7an}vsv {TS77'177027---77071}7P/)
with
P = {LTS: S — SS,{rg,rl,rg,...,rn}J}U{Lri: S —=ap,{ri}]|1<i< n}

As the cardinality of the success fieldgfisn + 1, ond(1P, L) <n + 1.

Now, we show that every programmed grammar in the one-ND rratenal
form generatingL,, requires at least one rule with 4+ 1 labels in its success
field. LetG' = (N, T, S, ¥, P), whereT = {a1,as, ...,a,}, be a programmed
grammar in the one-ND rule normal form such tha&’) = L,,. As L,, is infinite,
by Lemmd3, there is exactly one: A — z,0,| € P satisfyingcard(c,) > 1.
Let r, denote this rule.

First, we prove that there is at least onec o(r,) for eacha € T'. Then, we
show that there has to be at least one additional rute(in) to generate all the
strings inL,,.

Claim 5. For eacha € T, there has to be € o(r,) such thatQ), generates:
and @, does not generate artyc T, b # a.

Proof. For the purpose of contradiction, assume the contrary—i¢hassume that
there isa € T such that eacly), generating: generates also sonbec T, b # a.
Let s denote the shortest sequencelp generating bottr andb. Observe that
there is no string irl,, for which there is a derivation i6&” containings, or some

t > s (such a string would have to contain battandb). As all the sequences
in O, are deterministic, any prefix of could be contained at most once in any
successful derivation. As there is a limited number of sudfixes, it would be
impossible to derive™ for arbitrarym, contradictingL(G’) = L, so the claim
holds. O

By Claim[5, there has to bec o(r,) for eacha € T such that), generates
only a. LetQ(a) denote suchy),. Now, we show that there is at least one ad-
ditional rule ino(r;). Consider the following two cases, based on whether each
Q(a) reduces nonterminals or not:

(i) EachQ(a) does not reduce nonterminals. Sirdgeis infinite, by Lemma#,
there has to be at least one additiopak o(r,) such thatQ, reduces
nonterminals.

326

On Nondeterminism in Programmed Grammars

(i) Atleast oneQ(a) reduces nonterminals. Now, assume—for the purpose of
contradiction—thatard(o(r;)) = n. As only Q(a) generates:, and it
also reduces nonterminals, there is sdme 0 such that eacku,r,) =+
(w,q), whereq € ¥, uw € V*, andw € {a}*, implies|w| < k|u|. As there
is a limited number of such that can be derived fror without usingr..,
a™ cannot be derived for arbitrary, which leads to a contradiction. Thus,
there has to be an additional ruledir,,).

Observe that these two cases cover all possifile) for eacha € T'. There-
fore,card(o(ry)) > n+1, which impliesond(; P, L,,) > n+1. Therefore L,, ¢
OND(;P,n). Sinceond(1P, L,,) < n+ 1 impliesL,, € OND(;P,n + 1), the
lemma holds. O

The following theorem represents the second main achieveaf¢his paper.
Theorem 2. OND(P,n) C OND(P,n + 1)
Proof. This theorem follows Lemnia 2 and Lemina 5. O

4 Concluding Remarks

In this concluding section of our paper, we formulate somengproblem areas.
First, consideprogrammed grammars with appearance checkseg [3]). Recall
that in these grammars, another set of rules—calledaihee field—is attached
to every rule of the underlying context-free grammar. Thenyle like this can
be either applied in the same way as in a programmed grammahich case
we pass to a rule from its success field, or, if this rule is pmiiaable, then the
sentential form remains unchanged and we pass to a rule fsdailure field. Do
the achieved results also hold in terms of programmed graswith appearance
checking?

Second, reconsider Algorithid 1. Observe that it introdum@sing rules to
G’, even if the input grammatz, is propagating. Can we modify this algorithm
so that wher(G is propagating, then so &’? Furthermore, do Theorerins 1 dnd 2
hold in case of propagating programmed grammars? Obseav¢hiln argument
Lemmdb is based on holds in terms of propagating programmasdrgars, too.

Acknowledgments
This work was supported by the MSM0021630528 and FIT-S-fjiafts.

References

[1] M. Barbaiani, C. Bibire, J. Dassow, A. Delaney, S. FazKd. lonescu, G. Liu, A. Lodhi,
and B. Nagy. The power of programmed grammars with grapims ftarious classeslournal
of Applied Mathematics & Computing2(1-2):21-38, 2006.

327

Alexander Meduna, Lukas Vrabel and Petr Zemek

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

(10]

(11]

(12]

(13]

H. Bordihn and M. Holzer. Programmed grammars and thedation to the LBA problem.
Acta Informatica 43(4):223-242, 2006.

J. Dassow and G.&un. Regulated Rewriting in Formal Language Theor$pringer, New
York, 1989.

H. Fernau. Unconditional transfer in regulated rewagti Acta Informatica 34(11):837-857,
1997.

H. Fernau. Nonterminal complexity of programmed gramsnda heoretical Computer Sci-
ence 296(2):225-251, 2003.

H. Fernau. Programmed grammars with rule quel@®rnational Journal of Foundations of
Computer Sciencel8(6):1209-1213, 2007.

H. Fernau, R. Freund, M. Oswald, and K. Reinhardt. Refjrie nonterminal complexity of
graph-controlled, programmed, and matrix grammadmirnal of Automata, Languages and
Combinatorics 12(1-2):117-138, 2007.

H. Fernau and F. Stephan. How powerful is unconditiorahsfer? — When UT meets AC.
In Developments in Language Theppages 249-260, 1997.

H. Fernau and F. Stephan. Characterizations of realysenumerable sets by programmed
grammars with unconditional transfefournal of Automata, Languages and Combinatqrics
4(2):117-152, 1999.

C. Martin-Vide, V. Mitrana, and G.&un, editorsFormal Languages and Applicationshap-
ter 13, pages 249-274. Springer, Berlin, 2004.

A. Meduna.Automata and Languages: Theory and ApplicatioBpringer, London, 2000.

D. J. Rosenkrantz. Programmed grammars and classesmélf languagesJournal of the
ACM, 16(1):107-131, 1969.

G. Rozenberg and A. Salomaa, editorslandbook of Formal Languages, Vol. 2: Linear

Modeling: Background and Applicatiorchapter 3, pages 101-154. Springer, New York,
1997.

328

	Introduction
	Preliminaries and Definitions
	Results
	Concluding Remarks

