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Abstract

In the present paper, we discuss programmed grammars. More specif-
ically, we discuss their nondeterministic behavior and itsreduction. We
prove that for every programmed grammar, there exists an equivalent pro-
grammed grammar where only a single rule has more than one successor.
Furthermore, we establish an infinite hierarchy of languagefamilies result-
ing from the cardinality of successor sets. Open problem areas are formu-
lated in the conclusion of the paper.

1 Introduction

A programmed grammar(see [3, 12]),G, is a context-free grammar, in which a
set of rules—calledsuccessors—is attached to each rule.G can apply a ruler in
the following way. If the left-hand side ofr occurs in the sentential form under
scan,G rewrites the left-hand side ofr to its right-hand side, and during the next
derivation step, it has to apply a rule from the set attached to r.

Since their introduction, programmed grammars have represented a vividly
studied area of formal language theory, as demonstrated by several recent studies,
such as [1, 2, 4–9]. Although this theory has established their fundamental proper-
ties (see [3, 10, 13] for a highlight of crucially important results), the precise role
of nondeterminism in programmed grammars has not been studied to its fullness.
In [1] and [2], it is proved that (a) if we require every rule ina programmed gram-
mar to have at most one successor, then we can generate only finite languages,
and (b) any programmed grammar can be converted to an equivalent programmed
grammar with every rule having at most two successors. Also,other related re-
sults are proved in there. However, to our knowledge, there has been no study in
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terms of (i) the maximum needed number of rules with more thanone successor,
and (ii) the impact of the overall number of successors in rules with two or more
successors to the generative power of programmed grammars.The aim of this
paper is, therefore, to fill this gap.

To study (i), we introduce a new normal form for programmed grammars,
called theone-ND rule normal form(ND stands fornondeterministic), where no
more than one rule has more than one successor. We prove that every programmed
grammar can be converted to this form.

To study (ii), we propose a new measure, called theoverall nondeterminism
of a programmed grammar, as the sum of all successors of ruleswith two or
more successors. Then, informally speaking, we show that this measure gives
rise to an infinite hierarchy of language families. More precisely, letn denote the
overall sum of successors of rules with two or more successors. We prove that
programmed grammars withn + 1 such nondeterministic choices can generate
more languages than programmed grammars with onlyn choices.

It should be noted that some related measures of programmed grammars and
other regulated grammars are discussed in Section 4.3 of [3]and in [5, 7]. For
example, on page 192 in [3], it is pointed out that the more matrices in matrix
grammars we have, the more power we have. In [5, 7], the needednumber of
nonterminals to sustain the power of programmed grammars isdiscussed. As
obvious, our result can be thus seen as a continuation of these studies.

The paper is organized as follows. First, Section 2 gives allthe necessary
terminology. Then, Section 3 rigorously establishes the two results, (i) and (ii),
sketched above. Finally, Section 4 formulates some open problem areas.

2 Preliminaries and Definitions

This paper assumes that the reader is familiar with the theory of formal languages
(see [11]), including the theory of regulated rewriting (see [3]). For a set,Q,
card(Q) denotes the cardinality ofQ, and2Q denotes the power set ofQ. For
an alphabet (finite nonempty set),V , V ∗ represents the free monoid generated
by V under the operation of concatenation. The unit ofV ∗ is denoted byε. Set
V + = V ∗ − {ε}; algebraically,V + is thus the free semigroup generated byV

under the operation of concatenation. Forw ∈ V ∗, |w| denotes the length ofw.

Definition 1. A programmed grammar(see [3, 12]) is a quintuple,G = (N , T ,
S, Ψ, P ), whereN is an alphabet ofnonterminals, T is an alphabet ofterminals
(N ∩ T = ∅), S ∈ N is thestart symbol, Ψ is an alphabet ofrule labels, and
P ⊆ Ψ×N × (N ∪ T )∗ × 2Ψ is a finite relation such thatcard(Ψ) = card(P ),
and for(r,A, x, σr), (q,B, y, σq) ∈ P , if (r,A, x, σr) 6= (q,B, y, σq), thenr 6= q.

Elements ofP are calledrules. Instead of(r,A, x, σr) ∈ P , we write
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⌊r : A → x, σr⌋ ∈ P throughout this paper. For⌊r : A → x, σr⌋ ∈ P , A is
referred to as theleft-hand sideof r, andx is referred to as theright-hand sideof
r. Let V = N ∪ T be thetotal alphabet. G is propagatingif and only if every
⌊r : A → x, σr⌋ ∈ P satisfiesx ∈ V +. Rules of the form⌊r : A → ε, σr⌋ are
callederasing rules.

The relation of adirect derivation, symbolically denoted by⇒, is defined
over V ∗ × Ψ as follows: for(x1, r), (x2, s) ∈ V ∗ × Ψ, (x1, r) ⇒ (x2, s) (or
(x1, r) ⇒G (x2, s), if there is a danger of confusion) if and only ifx1 = yAz,
x2 = ywz, ⌊r : A → w, σr⌋ ∈ P , ands ∈ σr.

Let ⌊r : A → w, σr⌋ ∈ P . Then,σr is called thesuccess fieldof r. Observe
that, due to our definition of the relation of a direct derivation, if σr = ∅, thenr is
never applicable. Therefore, we assume thatσr 6= ∅, for all ⌊r : A → w, σr⌋ ∈ P ,
throughout the rest of our paper1. Let ⇒n, ⇒∗, and⇒+ denote thenth power
of ⇒, for somen ≥ 0, the reflexive-transitive closure of⇒, and the transitive
closure of⇒, respectively. Let(S, r) ⇒∗ (w, s), wherer, s ∈ Ψ andw ∈ V ∗.
The language generated byG is denoted byL(G) and defined asL(G) = {w ∈
T ∗ | (S, r) ⇒∗ (w, s), for somer, s ∈ Ψ}. �

Next, we define a new normal form and a new measure for programmed gram-
mars. Then, we illustrate the defined notions by an example.

Definition 2. Let G = (N , T , S, Ψ, P ) be a programmed grammar.G is in
the one-ND rule normal form(ND stands fornondeterministic) if at most one
⌊r : A → x, σr⌋ ∈ P satisfiescard(σr) ≥ 1 and every other⌊s : B → y, σs⌋ ∈ P

satisfiescard(σs) ≤ 1. �

Definition 3. Let G = (N , T , S, Ψ, P ) be a programmed grammar. For each
⌊r : A → x, σr⌋ ∈ P , let ζ(r) be defined as:

ζ(r) =

{

card(σr) if card(σr) ≥ 2
0 otherwise.

Theoverall nondeterminism ofG is denoted byond(G) and defined asond(G) =
∑

r∈Ψ ζ(r). �

By P, we denote the family of languages generated by programmed gram-
mars. By1P, we denote the family of languages generated by programmed gram-
mars in the one-ND rule normal form.

Definition 4. LetX ∈ {P, 1P} andL ∈ X. Then, we define

1Recall that such a definition is not unusual in the literature(see, for instance, [8]).
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• ond(X,L) = min{ond(G) | G is in the form generatingX, L = L(G)},

• OND(X,n) = {M ∈ X | ond(X,M) ≤ n}. �

Example 1. Consider the languageK = {anbncn | n ≥ 1}. This non-context-
free language is generated by the programmed grammarG = (N , T , S, Ψ, P ),
whereN = {S, A, B, C}, T = {a, b, c}, andP contains the seven rules

⌊r1 : S → ABC, {r2, r5}⌋,

⌊r2 : A → aA, {r3}⌋,

⌊r3 : B → bB, {r4}⌋,

⌊r4 : C → cC, {r2, r5}⌋,

⌊r5 : A → a, {r6}⌋,

⌊r6 : B → b, {r7}⌋,

⌊r7 : C → c, {r7}⌋.

For example,aabbcc is generated by(S, r1) ⇒ (ABC, r2) ⇒ (aABC,
r3) ⇒ (aAbBC, r4) ⇒ (aAbBcC, r5) ⇒ (aabBcC, r6) ⇒ (aabbcC, r7) ⇒
(aabbcc, r7).

Since the only nondeterministic rules arer1 andr2, each containing two rules
in their successor sets, the overall nondeterminism ofG is ond(G) = 4. There-
fore,K ∈ OND(P, 4).

Because ofr1 and 2, G is not in the one-ND rule normal form. However,
consider the programmed grammarH = (N , T , S, Ψ′, P ′), whereP ′ contains
the eight rules

⌊r0 : S → abc, {r0}⌋,

⌊r1 : S → ABC, {r2}⌋,

⌊r2 : A → aA, {r3}⌋,

⌊r3 : B → bB, {r4}⌋,

⌊r4 : C → cC, {r2, r5}⌋,

⌊r5 : A → a, {r6}⌋,

⌊r6 : B → b, {r7}⌋,

⌊r7 : C → c, {r7}⌋.

Clearly,L(H) = K andH is in the one-ND rule normal form. Observe that
ond(H) = 2, soK ∈ OND(P, 2). Finally, sinceH is in the one-ND rule normal
form, K ∈ OND(1P, 2). In the next section, we show thatOND(P, n) =
OND(1P, n). �

3 Results

The following algorithm converts any programmed grammar,G, to an equivalent
programmed grammar,G′, in the one-ND rule normal form. To give an insight
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into this conversion, we first explain the underlying idea behind it. First, we in-
troduce the only nondeterministic rule ofG′, ⌊X : # → ε, σX⌋. Obviously, each
nondeterministic choice of some rule⌊r : A → x, {s1, s2, . . . , sn}⌋ of G has to
be simulated usingX. To ensure proper simulation, we have to satisfy that (i) one
of si is applied afterr, and (ii) no other rules can be applied afterr.

To satisfy both of these requirements, we introduce a special nonterminal sym-
bol, 〈r〉, for each ruler of G. These symbols are used to encode the information
about the last applied rule in a derivation. Then, for each successor ofr, si, we
introduce the following sequence of rules:

• ⌊r : A → 〈r〉#, {X}⌋ to preserve the information thatr is the currently
simulated rule,

• X to make a nondeterministic choice of the successor ofr, and

• ⌊〈r � si〉 : 〈r〉 → x, {si}⌋ to simulater and continue withsi.

Note that ifX chooses some〈p � q〉 with p 6= r instead, the derivation gets
blocked because〈p〉 is not present in the current sentential form.

Algorithm 1. Conversion of any programmed grammar to the one-ND rule nor-
mal form.

Input: A programmed grammar,G = (N , T , S, Ψ, P ).

Output: A programmed grammar in the one-ND rule normal form,G′ =
(N ′, T, S′,Ψ′, P ′), such thatL(G′) = L(G).

Method: Initially, set:

N ′ = N ∪ {#} ∪ {〈r〉 | r ∈ Ψ};

Ψ′ = Ψ ∪ {X} with X being a new unique symbol;

P ′ = {⌊r : A → x, σr⌋ | ⌊r : A → x, σr⌋ ∈ P, card(σr) = 1} ∪
{⌊X : # → ε, σX⌋} with σX being initially set to∅.

Now, for each⌊r : A → ω, σr⌋ ∈ P satisfyingcard(σr) > 1, apply the
following two steps:

(1) add⌊r : A → 〈r〉#, {X}⌋ toP ′;

(2) for eachq ∈ σr, add⌊〈r � q〉 : 〈r〉 → ω, {q}⌋ to P ′, 〈r � q〉 to Ψ′,
and〈r � q〉 to σX . �

Lemma 1. Algorithm 1 is correct.
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Proof. Clearly, the algorithm always halts andG′ is in the one-ND rule normal
form. To establishL(G) = L(G′), we first proveL(G) ⊆ L(G′) by showing
how derivations ofG are simulated byG′, and then we proveL(G′) ⊆ L(G) by
showing how everyw ∈ L(G′) can be generated byG.

First, we introduce some notions used later in the proof. SetV = N ∪ T ,
V ′ = N ′ ∪T , andN̄ = {〈r〉 | r ∈ Ψ}. For⌊p : A → x, σp⌋ ∈ P ′, let lhs(p) = A

andrhs(p) = x.
We say that a rule labeled byr is usedin a derivation, if the derivation can

be expressed as(u, p) ⇒∗ (v, r) ⇒+ (w, q), and for two labelsq, r, we say
thatq followsr in a derivation, if the derivation can be expressed as(u1, p1) ⇒

∗

(v, r) ⇒ (w, q) ⇒∗ (u2, p2).

Claim 1. Let(S, s) ⇒m
G (w, q), wheres, q ∈ Ψ, w ∈ V ∗, for somem ≥ 0. Then,

(S, s) ⇒∗

G′ (w, q).

Proof. This claim is established by induction onm, m ≥ 0.

Basis.Letm = 0. Then, for(S, s) ⇒0
G (S, s), wheres ∈ Ψ, there is(S, s) ⇒0

G′

(S, s), so the basis holds.

Induction Hypothesis.Suppose that the claim holds for all derivations of lengthl

or less, wherel ≤ m, for somem ≥ 0.

Induction Step.Consider any derivation of the form(S, s) ⇒m+1
G (w, q), where

w ∈ V ∗ and s, q ∈ Ψ. Sincem + 1 ≥ 1, this derivation can be expressed
as (S, s) ⇒m

G (u, p) ⇒G (w, q), whereu ∈ V ∗, p ∈ Ψ. By the induction
hypothesis,(S, s) ⇒∗

G′ (u, p).
Now, we consider two possible cases, (i) and (ii), based on whether⌊p : A →

x, σp⌋ ∈ P satisfiescard(σp) = 1 or card(σp) > 1:

(i) Let card(σp) = 1. Then,⌊p : A → x, σp⌋ ∈ P ′ by the initialization part of
the algorithm, so the induction step is completed for (i).

(ii) Let card(σp) > 1. Then,P ′ contains the following three rules:

• ⌊p : A → 〈p〉#, {X}⌋, created in (1),

• ⌊X : # → ε, σX⌋, created in the initialization part of the algorithm,
and

• ⌊〈p�q〉 : 〈p〉 → x, {q}⌋, created in (2) fromq, such that〈p�q〉 ∈ σX .

Based on these rules,(u, p) ⇒3
G′ (w, q), so the induction step is completed

for (ii).
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Now, we establish two claims which we use later in the proof ofL(G′) ⊆
L(G).

Claim 2. Let (S, s) ⇒∗

G′ (w, q), wheres, q ∈ Ψ′ andw ∈ V ′∗. Then, either
w ∈ V ∗, or w can be expressed asu〈r〉#v or u〈r〉v, whereu, v ∈ V ∗ and
〈r〉 ∈ N̄ .

Proof. Observe that only the rules created in (1) have symbols fromN ′ − N on
their right-hand side. These rules have to be followed byX, which have to be
followed by some rule created in (2). AsX erases# and rules created in (2) are
rewriting symbols fromN̄ to someω ∈ V ∗, each string derived fromS can be
expressed asu, u〈r〉#v, oru〈r〉v, whereu, v ∈ V ∗ and〈r〉 ∈ N̄ .

Claim 3. Let (S, s) ⇒∗

G′ (w, q), wheres, q ∈ Ψ′, andw ∈ V ′∗. If w ∈ V ∗, then
q ∈ Ψ.

Proof. Let w ∈ V ∗ and assume—for the purpose of contradiction—thatq ∈
Ψ′ − Ψ. Then,q is eitherX, or it is created in (2). AsX is only in the success
field of some⌊r : A → 〈r〉#, {X}⌋ ∈ P ′, created in (1), and labels created in (2)
are only in the success field ofX, the derivation of(w, q) can be expressed in one
of the following two forms:

• (S, s) ⇒∗

G′ (w1Aw2, r) ⇒G′ (w1〈r〉#w2,X), or

• (S, s) ⇒∗

G′ (w1Aw2, r) ⇒G′ (w1〈r〉#w2,X) ⇒G′ (w1〈r〉w2, 〈r � q〉),

wherew1, w2 ∈ V ∗, and〈r � q〉 ∈ σX . Note that in both forms,w would have
to contain some〈r〉 ∈ N̄ , contradictingw ∈ V ∗. Thus,q′ ∈ Ψ, so the claim
holds.

The following claim shows that for eachw ∈ V ∗ derived inG′, there is a
derivation ofw in G.

Claim 4. Let(S, s) ⇒m
G′ (w, q), wheres, q ∈ Ψ, w ∈ V ∗, for somem ≥ 0. Then,

(S, s) ⇒∗

G (w, q).

Proof. This claim is established by induction onm, m ≥ 0.

Basis.Let m = 0. Then, for(S, s) ⇒0
G′ (S, s), wheres ∈ Ψ, there is(S, s) ⇒0

G

(S, s), so the basis holds.

Induction Hypothesis.Suppose that the claim holds for all derivations of lengthl

or less, wherel ≤ m, for somem ≥ 0.

Induction Step.Consider any derivation of the form(S, s) ⇒m+1
G′ (w, q), where

w ∈ V ∗ ands, q ∈ Ψ. Sincem + 1 ≥ 1, this derivation can be expressed as
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(S, s) ⇒m
G′ (u, p) ⇒G′ (w, q), whereu ∈ V ′∗, p ∈ Ψ′. Now, we consider all

possible forms of(u, p) ⇒G′ (w, q), covered by the next two cases:

(i) Let u ∈ V ∗. Then, by Claim 3,p ∈ Ψ. Therefore,⌊p : A → ω, {q}⌋ ∈ P ′

is one of the rules created in the initialization part of the algorithm, so it is
also inP . Thus,(u, p) ⇒G (w, q). By the induction hypothesis,(S, s) ⇒∗

G

(u, p), so the induction step is completed for (i).

(ii) Let u = u1〈r〉u2, whereu1, u2 ∈ V ∗ and 〈r〉 ∈ N̄ for somer ∈ Ψ.
Observe that⌊r : A → 〈r〉#, {X}⌋ ∈ P ′, created in (1), is the only rule
with 〈r〉 on its right-hand side. Furthermore, observe thatX has to follow
r in the derivation. Asrhs(r) contains# and only the rule labeled byX
erases#, X has to be used after the last occurrence ofr in the derivation.

Now, consider all the labes inσX . These labels belong to the rules created
in (2). Only these rules are rewriting the symbols from̄N to someω ∈ V ∗,
so they have to be used after(u, p) to satisfy(u, p) ⇒G′ (w, q). As p is
followed byq, p = 〈r � q〉, so the derivation can be expressed as

(S, s) ⇒m−3
G′ (u1Au2, r)

⇒G′ (u1〈r〉#u2,X)
⇒G′ (u1〈r〉u2, 〈r � q〉)
⇒G′ (w, q).

Observe that⌊r : A → 〈r〉#, {X}⌋ ∈ P ′ is created in (1) from some
⌊r : A → ω, σr⌋ ∈ P with q ∈ σr. Thus, (u1Au2, r) ⇒G (w, q).
Clearly,u1Au2 ∈ V ∗. Therefore, by the induction hypothesis,(S, s) ⇒∗

G

(u1Au2, r), so the induction step is completed for (ii).

These cases cover only two of the three possible forms ofu (see Claim 2).
However, ifu = u1〈r〉#u2, thenp = X. As σX contains only rules created in
(2), q would have to be inΨ′ − Ψ, contradictingq ∈ Ψ. Thus, cases (i) and (ii)
cover all possible forms of(u, p) ⇒G′ (w, q), so the claim holds.

To establishL(G) = L(G′), it suffices to show the following two statements:

• by Claim 1, for each(S, s) ⇒∗

G (w, q), wheres, q ∈ Ψ andw ∈ T ∗, there
is (S, s) ⇒∗

G′ (w, q), soL(G) ⊆ L(G′);

• let (S, s) ⇒∗

G′ (w, q), wheres, q ∈ Ψ′ andw ∈ T ∗. Asw 6= S, s is used in
the derivation, and solhs(s) = S. Observe that only rules with labels from
Ψ haveS on their left-hand side, sos ∈ Ψ. Asw ∈ T ∗, q ∈ Ψ by Claim 3.
Then, by Claim 4,(S, s) ⇒∗

G (w, q), soL(G′) ⊆ L(G).
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AsL(G) ⊆ L(G′) andL(G′) ⊆ L(G), L(G) = L(G′), so the lemma holds.

The following theorem represents the first main achievementof this paper.

Theorem 1. For any programmed grammar,G, there is a programmed grammar
in the one-ND rule normal form,G′, such thatL(G′) = L(G).

Proof. This theorem follows from Algorithm 1 and Lemma 1.

Now, we study the impact of the overall number of successors in rules with
two or more successors to the generative power of programmedgrammars. First,
however, we introduce some notions. LetG = (N , T , S, Ψ, P ) be a programmed
grammar in the one-ND rule normal form. SetV = N ∪T , and for each⌊r : A →
x, σr⌋ ∈ P , let σ(r) = σr. Foru ∈ V ∗ andW ⊆ V , let occur(u,W ) denote the
number of occurrences of symbols fromW in u.

Let s = (r1, r2, . . . , rk), whereri ∈ Ψ, for all i = 1, 2, . . . , k, be a sequence
of labels. We say thats is deterministicif σ(ri−1) = {ri}, for i = 2, 3, . . . , k.
Each sequence of labels of the form(r1, r2, . . . , rj), wherej ≤ k, is called a
prefixof s.

We say thats generatesa, wherea ∈ V , if some⌊ri : A → x, σ⌋ ∈ P satisfies
x = uav, whereu, v ∈ V ∗, for somei, 1 ≤ i ≤ k. We say that a derivation
containss if it can be expressed as(u, p) ⇒∗ (w1, r1) ⇒ (w2, r2) ⇒ · · · ⇒
(wk, rk) ⇒∗ (v, q), whereu, v, wi ∈ V ∗, p, q ∈ Ψ, for all i = 1, 2, . . . , k. Let
⇒[s] be a binary relation defined overV ∗ as follows: foru, v ∈ V ∗, u ⇒[s] v if
and only if there is a derivation(w1, r1) ⇒ (w2, r2) ⇒ · · · ⇒ (wk, rk) ⇒ (v, p)
such thatw1 = u.

Let Qr be the set of all deterministic sequences beginning withr ∈ P and let
≤ be a binary relation overQr defined ass ≤ t if and only if s is a prefix oft.
It is easy to see that≤ is reflexive, antisymmetric, transitive, and total (as all the
sequences are deterministic and starting with the same rule). As there is a least
element for every nonempty subset ofQr, (Qr,≤) is a well-ordered set.

We say thatQr generatesa ∈ V if and only if there is somes ∈ Qr such
thats generatesa. We say thatQr reduces nonterminalsif there is somes ∈ Qr

such that for eacht ≥ s and for eachu, v ∈ V ∗, if u ⇒[t] v, thenoccur(u,N) >
occur(v,N).

Lemma 2. OND(P, n) = OND(1P, n)

Proof. Let G = (N , T , S, Ψ, P ) be a programmed grammar. Then, by
Algorithm 1 and Lemma 1, we can construct a programmed grammar in the
one-ND rule form,G′ = (N ′, T, S′,Ψ′, P ′), such thatL(G) = L(G′) and
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⌊r : A → x, σr⌋ ∈ P ′ − {⌊X : # → ε, σX⌋} satisfiescard(σr) ≤ 1. Ob-
serve that for each⌊r : A → x, σr⌋ ∈ P with card(σr) > 1, there arecard(σr)
labels inσX created in (2) of Algorithm 1. As these are the only labels inσX ,
and all other rules inP ′ have at most one label in their success field, by Defini-
tion 3, ond(G′) = ond(G). Thus,OND(P, n) ⊆ OND(1P, n). Obviously,
OND(1P, n) ⊆ OND(P, n), so the lemma holds.

Lemma 3. LetG = (N , T , S, Ψ, P ) be a programmed grammar in the one-ND
rule normal form such thatL(G) is infinite. Then, there is exactly oner ∈ Ψ such
that card(σ(r)) > 1.

Proof. This lemma follows from Definition 2 in Section 2 and from Lemma 8
in [2], which says that programmed grammars with every rule having at most one
successor generate only finite languages.

Lemma 4. Let G = (N , T , S, Ψ, P ) be a programmed grammar in the one-
ND rule normal form such thatL(G) is infinite, and letrx denote the only rule
satisfyingcard(σ(rx)) > 1. Then, there arep, q ∈ σ(rx) such thatQp reduces
nonterminals andQq does not reduce nonterminals.

Proof. Observe that there is a finite number ofu ∈ V ∗ that can be derived without
rx being used in their derivation. Furthemore,rx has to be used arbitrary many
times to derive a string of arbitrary length (see Lemma 3).

Now, we prove by contradiction that there is at least oner ∈ σ(rx) such that
Qr reduces nonterminals. Assume—for the purpose of contradiction—that each
Qr, wherer ∈ σ(rx), does not reduce nonterminals. Then, for sufficiently large
k, (u, rx) ⇒k (w, q) impliesw 6∈ T ∗. Therefore,L(G) would be finite, which
leads to a contradiction. Thus, there is at least oner ∈ σ(rx) such thatQr reduces
nonterminals.

Now, we prove by contradiction that there is at least oner ∈ σ(rx) such that
Qr does not reduce nonterminals. Assume—for the purpose of contradiction—
that eachQr, wherer ∈ σ(rx), reduces nonterminals. Then, there exists some
k ≥ 0 such that each(u, rx) ⇒+ (w, q), wherew ∈ T ∗, implies |w| ≤ k|u|. As
there is a finite number of suchu that can be derived fromS without usingrx,
L(G) is finite, which leads to a contradiction. Thus, the lemma holds.

Lemma 5. OND(1P, n) ⊂ OND(1P, n+ 1)

Proof. LetLn be a language overΣ = {a1, a2, . . . an}, defined as

Ln =

n
⋃

i=1

{ai}
+.
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We show thatond(1P, Ln) = n+ 1.
First, observe thatLn is generated by the propagating programmed grammar

G =
(

{S}, {a1, a2, . . . , an}, S, {rS , r1, r2, . . . , rn}, P
′
)

with

P ′ =
{

⌊rS : S → SS, {rS , r1, r2, . . . , rn}⌋
}

∪
{

⌊ri : S → ai, {ri}⌋ | 1 ≤ i ≤ n
}

.

As the cardinality of the success field ofrS is n+ 1, ond(1P, Ln) ≤ n+ 1.
Now, we show that every programmed grammar in the one-ND rulenormal

form generatingLn requires at least one rule withn + 1 labels in its success
field. LetG′ = (N , T , S, Ψ, P ), whereT = {a1, a2, . . . , an}, be a programmed
grammar in the one-ND rule normal form such thatL(G′) = Ln. AsLn is infinite,
by Lemma 3, there is exactly one⌊r : A → x, σr⌋ ∈ P satisfyingcard(σr) > 1.
Let rx denote this rule.

First, we prove that there is at least onera ∈ σ(rx) for eacha ∈ T . Then, we
show that there has to be at least one additional rule inσ(rx) to generate all the
strings inLn.

Claim 5. For eacha ∈ T , there has to ber ∈ σ(rx) such thatQr generatesa
andQr does not generate anyb ∈ T , b 6= a.

Proof. For the purpose of contradiction, assume the contrary—thatis, assume that
there isa ∈ T such that eachQr generatinga generates also someb ∈ T , b 6= a.
Let s denote the shortest sequence inQr generating botha andb. Observe that
there is no string inLn for which there is a derivation inG′ containings, or some
t ≥ s (such a string would have to contain botha andb). As all the sequences
in Qr are deterministic, any prefix ofs could be contained at most once in any
successful derivation. As there is a limited number of such prefixes, it would be
impossible to deriveam for arbitrarym, contradictingL(G′) = Ln, so the claim
holds.

By Claim 5, there has to ber ∈ σ(rx) for eacha ∈ T such thatQr generates
only a. Let Q(a) denote suchQr. Now, we show that there is at least one ad-
ditional rule inσ(rx). Consider the following two cases, based on whether each
Q(a) reduces nonterminals or not:

(i) EachQ(a) does not reduce nonterminals. SinceLn is infinite, by Lemma 4,
there has to be at least one additionalp ∈ σ(rx) such thatQp reduces
nonterminals.
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(ii) At least oneQ(a) reduces nonterminals. Now, assume—for the purpose of
contradiction—thatcard(σ(rx)) = n. As only Q(a) generatesa, and it
also reduces nonterminals, there is somek ≥ 0 such that each(u, rx) ⇒+

(w, q), whereq ∈ Ψ, u ∈ V ∗, andw ∈ {a}∗, implies |w| ≤ k|u|. As there
is a limited number of suchu that can be derived fromS without usingrx,
am cannot be derived for arbitrarym, which leads to a contradiction. Thus,
there has to be an additional rule inσ(rx).

Observe that these two cases cover all possibleQ(a) for eacha ∈ T . There-
fore,card(σ(rx)) ≥ n+1, which impliesond(1P, Ln) ≥ n+1. Therefore,Ln 6∈
OND(1P, n). Sinceond(1P, Ln) ≤ n+ 1 impliesLn ∈ OND(1P, n+ 1), the
lemma holds.

The following theorem represents the second main achievement of this paper.

Theorem 2. OND(P, n) ⊂ OND(P, n + 1)

Proof. This theorem follows Lemma 2 and Lemma 5.

4 Concluding Remarks

In this concluding section of our paper, we formulate some open problem areas.
First, considerprogrammed grammars with appearance checking(see [3]). Recall
that in these grammars, another set of rules—called thefailure field—is attached
to every rule of the underlying context-free grammar. Then,a rule like this can
be either applied in the same way as in a programmed grammar, in which case
we pass to a rule from its success field, or, if this rule is not applicable, then the
sentential form remains unchanged and we pass to a rule from its failure field. Do
the achieved results also hold in terms of programmed grammars with appearance
checking?

Second, reconsider Algorithm 1. Observe that it introduceserasing rules to
G′, even if the input grammar,G, is propagating. Can we modify this algorithm
so that whenG is propagating, then so isG′? Furthermore, do Theorems 1 and 2
hold in case of propagating programmed grammars? Observe that the argument
Lemma 5 is based on holds in terms of propagating programmed grammars, too.
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