
On State Grammars With Final States

Petr Zemek, izemek@fit.vutbr.cz

November 4, 2010

Abstract

A state grammar is a combination of a context-free grammar and a
finite automaton. However, unlike finite automata, state grammars have
no final states. The present note shows that by introducing final states to
state grammars we do not affect their generative power.

1 Introduction

A state grammar, as is was introduced by Kasai in [2], is a combination of a
context-free grammar and a finite automaton. In a single derivation step, a
nonterminal is rewritten to a string and the current state is changed. Moreover,
the leftmost nonterminal which can be rewritten has to be rewritten. Also,
recall that Kasai did not consider the presence of erasing rules—that is, rules
with the empty string on their right hand sides. This was considered later by
Horváth and Meduna in [1].

In finite automata, the input string is accepted if and only if the automaton reads
the whole input and ends in a final state. However, in the original definition
of a state grammar, no final states are present. Indeed, a string of terminals is
generated by a state grammar no matter what state the grammar ends up in.
Therefore, it is a natural question what happens if we include final states to
the definition of a state grammar. The present paper shows that by introducing
final states to state grammars we do not affect their generative power.

2 Preliminaries and Definitions

This paper assumes that the reader is familiar with the theory of formal lan-
guages (see [4, 3]). For an alphabet, V , V ∗ represents the free monoid generated
by V under the operation of concatenation. The unit of V ∗ is denoted by ε.
For a word, w ∈ V ∗, alph(w) denotes the set of symbols occurring in w.

A state grammar (see [1, 2]) is a sextuple, G = (N , T , Q, P , S, s), where N and
T are two disjoint alphabets, Q is a finite non-empty set, P ⊆ N×Q×V ∗×Q is

1



finite, S ∈ N , and s ∈ Q. Set V = N∪T . V , N , T , Q, P , S, and s are called the
total alphabet, the alphabet of terminals, the alphabet of nonterminals, the set
of states, the set of rules, the start nonterminal, and the start state, respectively.
Instead of (A, p, x, q) ∈ P , we write (A, p) → (x, q) ∈ P throughout the rest of
the paper. If every (A, p) → (x, q) ∈ P implies x 6= ε, then G is ε-free. The
relation of a direct derivation, symbolically denoted by ⇒, is defined as follows:
if (A, p)→ (x, q) ∈ P , u = (rAs, p), v = (rxs, q), where r, s ∈ V ∗, and for every
(B, p) → (y, t) ∈ P , B /∈ alph(r), then u ⇒ v in G. The language generated by
G, denoted by L(G), is defined as L(G) = {w ∈ T ∗ | (S, s) ⇒∗ (w, q), for some
q ∈ Q}, where ⇒∗ is the reflexive and transitive closure of ⇒.

A state grammar with final states is a septuple, H = (N , T , Q, P , S, s, F ),
where N , T , Q, P , S, s, ⇒, and ⇒∗ are defined as in state grammars and
F ⊆ Q is the set of final states. By analogy with ε-free state grammars, we
define ε-free state grammars with final states. The language generated by H,
denoted by L(H), is defined as L(H) = {w ∈ T ∗ | (S, s) ⇒∗ (w, f), for some
f ∈ F}.

By CS and RE, we denote the families of context-sensitive and recursively enu-
merable languages, respectively. STε and ST denote the families of languages
generated by state grammars and by ε-free state grammars, respectively. STε

F

and STF denote the families of languages generated by state grammars with
final states and by ε-free state grammars with final states, respectively.

3 Main Result

Recall that STε = RE (see Theorem 1 in [1]) and ST = CS (see Theorem 2
in [2]). We show that also STε

F = RE and STF = CS.

Lemma 1. STε ⊆ STε
F and ST ⊆ STF

Proof. Let G = (N , T , Q, P , S, s) be any state grammar. The state grammar
H = (N , T , Q, P , S, s, Q) clearly satisfies L(H) = L(G) and if G is ε-free,
then so is H.

Lemma 2. STε
F ⊆ RE

Proof. This inclusion can be obtained by standard simulations by a Turing
machine.

Lemma 3. STF ⊆ CS

Proof. As ε-free state grammars cannot shorten their sentential forms, their
derivations can be simulated by linear bounded automata. Hence, the lemma
holds.

2



Theorem 1. STε = STε
F = RE and ST = STF = CS

Proof. STε = STε
F = RE follows from Lemma 1, Lemma 2, and from the fact

that STε = RE. ST = STF = CS follows from Lemma 1, Lemma 3, and from
the fact that ST = CS.

References

[1] G. Horváth and A. Meduna. On state grammars. Acta Cybernetica,
1988(8):237–245, 1988.

[2] T. Kasai. An hierarchy between context-free and context-sensitive
languages. Journal of Computer and System Sciences, 4:492–508, 1970.

[3] A. Meduna. Automata and Languages: Theory and Applications. Springer,
London, 2000.

[4] A. Salomaa. Formal Languages. Academic Press, 1973.

3


